

Advances in gamma-ray spectroscopy for nuclear Physics and Astrophysics

Daniele Mengoni Dept. Phyisics e Astronomy, Università di Padova & INFN Padova

Camerino 7 Nov. 2022

Advances in γ -ray spectroscopy

Daniele Mengoni

Advances in γ -ray spectroscopy

My youth: XIX "ciclo" PHD

Daniele Mengoni

Outlook

Why Nuclear Structure
 The leap
 Science campaign
 The future

Why NS?

Complex many-body quantal systems at mesoscopic scale
 Hamiltonian describes systems from few eV to GeV: 9
orders!!!

Comprehensive theory starting from "first principles"

Daniele Mengoni

Advances in γ -ray spectroscopy

Nuclear Structure (t)rail

2010

Daniele Mengoni

Advances in γ -ray spectroscopy

Technological leap: γ-ray tracking

Resolving Power:

 Outstanding sensitivity for lifetime measurement (~Ψ)

Reduced minimum detectable limit, cross section (~E)

price to pay: complexity and cost

- 6660 high-resolution digital electronics channels
- High throughput DAQ / load computational resources
- Pulse Shape Analysis → position sensitive operation mode
- γ-ray tracking algorithms → maximum efficiency and P/T

Daniele Mengoni

Scientific campaign

Daniele Mengoni

some evidence: highlights of the AGATA+MUGAST+VAMOS campaign

Daniele Mengoni

Advances in γ -ray spectroscopy

Once upon a time (2015)

- New Si DSSD for GASPARD-TRACE
 1π AGATA at VAMOS
 New spiral1 beams
- Cryo target

First high-resolution direct reaction studies using AGATA and ISOL RIB beams (2019)

Daniele Mengoni

Advances in γ -ray spectroscopy

Direct reaction with ISOL beam

nuclei A + B at energy E:
predict initial and all final states
predict C.S. for each one

Selectivity : Memory of initial state: single particle, np-nh, cluster

Sensitivity: C.S. carries W.F. information Specific state structure Probe $\ll \Delta \Psi \gg$

Credit A.Matta

MUGAST-AGATA-VAMOS set-up @ GANIL with Spiral1 beams

Unmatched worldwide performances and versatility for direct reactions

Performance set-up

Doppler correction using:

- β beam at mid-target(red, 10 keV FWHM)
- Using light particle info in MUGAST (black, 7 keV FWHM)

Particle ID with MUGAST-VAMOS

M. Assié et al, NIMA (2021)

Advances in γ -ray spectroscopy

AGATA + MUGAST + VAMOS science campaign

2019	UNBOUND STATES Above barrier narrow resonances in ¹⁵ F PhD : V. Alcindor I. Stefan (IJC lab), F. de Oliveira (GANIL) ¹⁴ O(p,p') with few 10 ⁵ pps	NUCLEAR ASTROPHYSICS. Determining the α+ ¹⁵ O radiative capture rate PhD : J. Sanchez Rojo C. Diget (York), N De Séréville (IJC lab) ¹⁵ O(⁷ Li,tγ) ¹⁹ Ne with 4. 10 ⁷ pps	SHELL STRUCTURE Is there a problem with protons in N=28 nucleus ⁴⁶ Ar ? A. Gottardo INFN, M. Assié IJCLab, D.M. UniPd PhD : D. Brugnara ⁴⁶ Ar(³ He,dγ) ⁴⁷ K with 4. 10 ⁴ pps HeCTOr Target	
2020	SHELL STRUCTURE Lifetime measurements of 2 ₂ ⁺ and 3 ₁ ⁺ of ²⁰ O by direct nucleon transfer <i>PhD</i> : <i>I. Zanon</i> <i>E. Clément (GANIL), A. Goasduf (INFN)</i> ¹⁸ O(d,pγ) + DSAM	SHELL STRUCTURE Proton-neutron interactions across the N = 28 shell closure via ⁴⁷ K(d,p) ⁴⁸ K W. Catford (Surrey), A. Matta (LPC) ⁴⁷ K(d,pγ) ⁴⁸ K neutron transfer	 First time: α-transfer (stripping) at Ganil Lifetime measurement of states populated by transfer (³He,d) reaction 	
2021	SHELL STRUCTURE Proton-neutron interactions across the N = 28 shell closure via ⁴⁷ K(d,p) ⁴⁸ K W. Catford (Surrey), A. Matta (LPC) ⁴⁷ K(d,pγ) ⁴⁸ K neutron transfer	NUCLEAR ASTROPHYSICS Neutron capture at the 65Kr s-process branching F. Recchia (INFN), S. Palmerini ⁸⁵ Kr(d,pγ) ⁸⁶ Kr with 10 ⁸ pps Approved in 2019, backlog	With radioactive ion beams	

Daniele Mengoni

Advances in γ -ray spectroscopy

Accreting neutron stars & X-ray bursts

NS accreting matter from companion; Accreted H is burned to He; ignition of Hot-CNO cycle

- Breakout from Neutron star Hot-CNO
- Break out point: ¹⁵O(α,γ)¹⁹Ne

$^{15}O(\alpha,\gamma)^{19}Ne \leftarrow ^{15}O(^{7}Li,t)^{19}Ne$

Tension in former
 measurements, large
 uncertainty / inaccuracy

- Challenge of measuring the rate through the 4.033 MeV state in 19Ne
- sensitive determination of the alpha capture rate

Seminar

Pushing the limit of sensitivity

■ ${}^{15}O(\alpha,\gamma){}^{19}Ne \leftarrow {}^{15}O({}^{7}Li,t){}^{19}Ne$

From: J.Sanchez Rojo PhD thesis

Beam rate : ~10⁷pps and **triple coincidence (exp no background!)**: γ +t+¹⁹Ne

First position of interaction an add back

• Minimum detection limit: cross-section few $\mu b/sr \rightarrow$ new and accurate results

Daniele Mengoni

Advances in γ -ray spectroscopy

 E_x

Seminar

PARTIAL WIDTH CALCULATION

- ★ Partial widths and spin-parities determine the reaction rates
- ★ New results for the first 3 resonances
- ★ For the 4033 keV state $(1\sigma C.L.)$:

$$\Gamma_lpha=3.0^{+4.0}_{-2.2}~\mu\mathrm{eV}$$

 Reduced by a factor of 6, and below the previous lower (1σ) limit.

$$\Gamma_lpha=2P_l(r_c,E_r)rac{\hbar^2r_c}{2\mu}C^2S_lpha|\phi(r_c)|^2$$

	$\Gamma_{\alpha} \; (\mu \mathrm{eV})$			
$_{x}$ (keV)	This work	[Tan09]	[FLS10]	
4033	$3.0^{+4.0}_{-2.2}$	17 ± 13	24(18)	
4140	0.28 ± 0.04	44 ± 20		
4197	3.0 ± 0.3	18 ± 9		
4379	128^{+123}_{-68}	160^{+110}_{-70}	150(6)	
4600	$3.4^{+4.4}_{-2.2}\cdot 10^3$	$24^{+33}_{-10} \cdot 10^3$	$96(24) \cdot 10^3$	

The oxygen anomaly

Lifetime measurements of 2_2^+ and 3_1^+ in ²⁰O by nucleon transfer

¹⁹O(d,pγ) + DSAM

- Probe the 3-body interaction

---- Combination of DSAM + transfer to identify the entrance channel and control the feeding

Daniele Mengoni

Advances in γ -ray spectroscopy

Seminar

E. Clément (GANIL), A. Goasduf (INFN)

Ph.D : I.Zanon (Ferrara U.)

¹⁹O(d,pγ)

Role of 3-body forces

Triple coincidences: reconstructed entry point (MUGAST) through transfer reaction to avoid top feeding + continuous-angle line shape (AGATA)+ channel selection (VAMOS)

- Lifetimes measured significanlty shorter (thanks to continuous angle resolution) than predictions for the 2⁺, theoretical interpretation ongoing
- First lifetime measurement in the tens of femto-sec. scale (DSAM) using transfer reaction in inverse kinematics

Daniele Mengoni

Advances in γ -ray spectroscopy

Angle \rightarrow Doppler Effect \rightarrow Lifetime

Continuous-angle DSAM represents an advancement of the "conventional" DSAM. It extends the γ -ray lineshapes analysis as a function of γ -ray energy to a lineshape analysis as a function of both γ -ray energy and polar angle of the γ -ray detection.

Ch. Stahl et al, CPC 214 (2017) 174

More convincing evidence for the lifetime sensitivity: sub fs !!

¹⁴N(²H,n)¹⁵O reaction @ 32MeV (XTU LNL Tandem) Direct lifetime measurement with 4 ATCs at backward angles (close to the beam-line)

Daniele Mengoni

Advances in γ -ray spectroscopy

Is there a problem with protons in N=28 ⁴⁶Ar?

SHELL MODEL Is there a problem with protons in N=28 nucleus ⁴⁶Ar ?

A.Gottardo INFN, M. Assié IIJCLab) D.M. (Univ of Padova) Ph.D : D.Brugnara (Padova U.)

⁴⁶**Ar**(³**He**,dγ)⁴⁷**K** proton transfer

GOAL:

Proton shell structure at N=28 : Measuring π s1/2 depletion in ⁴⁶Ar --> indication on possible change in the π s_{1/2}- π d_{3/2}

First experiment with ³He cryogenic target !

Theory for neutrons WF :

- confirming N=28 shell closure in ⁴⁶Ar
- SDPF interaction describes valence-core neutrons interaction very well

Large discrepancy with the measured B(E2) value at N=28: problem with the proton E2 contribution ?

• Proton shell structure at N=28 : inversion of $\pi s_{1/2}$ and $\pi d_{3/2}$

Measuring π s1/2 depletion in ⁴⁶Ar --> indication on possible change in the π s1/2- π d3/2 positions

Central density depletion linked to spin-orbit splitting reduction

Daniele Mengoni

Advances in γ -ray spectroscopy

Ø 16 mm
Opening angle: 130 deg.
Havar windows: 3.8um
T ~ 6-7 K. / P up to 1 bar
Equivalent thickness 2 mg/cm²
³He recycling
LHe open circuit

M. Pierens, V. Delpech, F. Galet, H. Saugnac (IJCLab) A. Giret & J. Goupil (GANIL)

The HEcTOR cryogenic ³He target

Monitoring of target with VAMOS :

- Target pressure & temperature stable

F. Galtarossa et al, NIMA (2021)

- Ice formation on the target with time

Daniele Mengoni

Advances in γ-ray spectroscopy

Advances in γ -ray spectroscopy

Bubble inside

The calculated proton density for silicon-34 (right) and, for comparison, sulfur-36 (left), as a function of the distance from the center of the nucleus. At its center, silicon-34 has about half the proton density of a comparable nucleus.

Relativistic mean field calculations

Daniele Mengoni

Advances in γ -ray spectroscopy

The Future

Daniele Mengoni

Advances in γ -ray spectroscopy

Advances in γ -ray spectroscopy

The parcel

- Proton drip line: around ¹⁰⁰Sn using
 intense stable beams and AGATA+NEDA+EUCLIDES
- Neutron drip line: around ¹³²Sn with
 SPES beam and AGATA+GRIT+PARIS

Advances in γ -ray spectroscopy

Daniele Mengoni

From ground breaking to first commissioning 1 (26/4-3/5, 2022)

PRISMA setting ⁵⁸Ni @250MeV + ¹⁹⁷Au @ 0.2 mg/cm²

Multi-nucleon transfer

³²S @160MeV + ¹²⁴Sn @ 0.5 mg/cm² 2.5 mg/cm²

• Spokespersons: F. Crespi, F. Galtarossa, J. Pellumaj, M. Rocchini, M. Sedlak

Ground breaking 10/3/2021

Daniele Mengoni

Advances in γ -ray spectroscopy

Commissioning: preliminary results

Daniele Mengoni

Advances in γ -ray spectroscopy

First experiment: intruder states in ³⁷S

- Spokepersons: F. Galtarossa and A. Gottardo/ PhD thesis L. Zago
- One n transfer reaction to spot the mixing between normal and intruder configuration
- Low-lying states can not be explained as single-particle fragment: *intruder* configuration from the N=20 core breaking?

E. K. Warburton, Phys. Rev. C **35** (1987) 2278; Phys. Rev. C **37** (1988) 754 R. Chapman et al., Phys. Rev. C **93** (2016) 044318

E. Caurier, F. Nowacki, and A. Poves, Phys. Rev. C 90 (2014) 014302

Daniele Mengoni

Advances in γ -ray spectroscopy

Simulations for ³⁶S(d,p)³⁷S (N=21)

The lifetime of the 3/2⁺ level is expected to be in the range 10-500 ps -> PLUNGER;
 Iifetime of the 7/2⁻₂ level is expected to be in the range 50-500 fs -> DSAM
 ³⁶S beam provided by the TANDEM accelerator at 180 MeV and 0.1 pnA (~ 5x10⁸ pps);
 CD₂ target of 0.5 mg/cm² (~ 5x10¹⁹ atoms/cm² of ²H);

Au stopper

Au

backing

CD₂

Freshly baked near line data

Excitation energy - Doppler corrected gamma energy for binary partner

- Entry point constrained by the reconstructed E_{ex}: lines of interest visible
- Lifetime from literature confirmed ~650 keV line

Advances in γ -ray spectroscopy

Conclusion and perspectives

- Technological leap is in mutual dependence with scientific findings
- Success of the direct measurement campaign using AGATA MUGAST VAMOS @ GANIL strongly depended on the enhanced resolving power of the complete detection setup

To push further the limit of discovery we need, next to complete major on-ongoing projects, to imagine new instruments

https://ecfa.web.cern.ch/

European Committee for Future Accelerato

https://www.nupecc.org/

https://web.infn.it/nucphys-plan-italy/

Daniele Mengoni

ECFA

Advances in γ -ray spectroscopy

Possibilities

Daniele Mengoni

Advances in γ-ray spectroscopy

Some possibilities

Preparation, participation, data analysis of experimental runs

Detector development and characterization

Simulations

Applications

Worldwide experiments

Daniele Mengoni

Detector development

Montecarlo Simulation
 Detector test:Cutting-edge dets high segmentation,
 NTD (uniformity), 6" inches, Random cut (channeling)
 Exps @ ISOL facility in Italy and worldwide

Daniele Mengoni

Advances in γ -ray spectroscopy

Target development

Hydrogen (h,d) target in a solid phase near triple point (~17K)
 Thickness 50 – 200 µm
 Commissioning: temperature, density and profile

Commissioning: temperature, density and profile

Detector development and characterization

Wire bonding (clean room)

Non destructive Resistivity measurement: laser and alpha source Digital Pulse shape analysis:numerical filters, NN (convolutional/ML perceptron) Signal simulation: drift/diffusion

Daniele Mengoni

Advances in γ -ray spectroscopy

Applications: beta batteries

Sviluppo batterie a bassa potenza e lunghissima durata per la medicina lo spazio e la sensoristica remota

Fisica di base

Applicazioni

Ambiente

INFN CSN3 :: MSc&BSC grants

https://web.infn.it/csn3/index.php/it/

Daniele Mengoni

Advances in γ -ray spectroscopy

daniele.mengoni@unipd.it

Further info on the group activity at the URLs: <u>DFA fisica-e-astrofisica-nucleare</u> <u>Gr3 INFN Padova</u>

If you are interested, thesis, internship offer etc can be found here

Daniele Mengoni

Advances in γ -ray spectroscopy

Advances in γ -ray spectroscopy

- MUGAST-AGATA@VAMOS : a technical & scientific success
- Valuable integration&operation exercise !
- Next step : MUGAST-EXOGAM@LISE

